
Chapitre 5

Calorimétrie

5.2 Capacité thermique d’un métal

Un bloc métallique de masse M1 a une température initiale T1i. Il
est plongé dans un calorimètre rempli d’une masse M2 d’eau. Le transfert de
chaleur du métal vers l’eau provoque l’augmentation de la température de l’eau
d’une température initiale T2i à une température finale Tf . On suppose que la
capacité thermique du calorimètre est négligeable et que le bloc et l’eau sont
incompressibles. Le système formé du bloc et de l’eau est considéré comme
isolé. La capacité thermique massique de l’eau est c∗2. Déterminer la capacité
thermique massique du métal c∗1.

Application numérique

M1 = 0.5 kg, M2 = 1 kg, T1i = 120◦C, T2i = 16◦C, Tf = 20◦C and c∗2 = 4187
J kg−1 K−1.

5.3 Solution

Le système constitué du bloc métallique et de l’eau est isolé. Ainsi, la variation
d’énergie interne du système, qui est la somme de la variation d’énergie interne
du bloc ∆U1 i→f et de l’eau ∆U2 i→f , est nulle,

∆Ui→f = ∆U1 i→f +∆U2 i→f = 0

Compte tenu des transferts de chaleur entre les sous-système à volume constant,
le premier principe (1.65) appliqué au bloc et à l’eau s’écrit,

∆U1 i→f = Q 2→1
i→f = C1 (Tf − T1i) = M1 c

∗
1 (Tf − T1i)

∆U2 i→f = Q 1→2
i→f = C2 (Tf − T2i) = M2 c

∗
2 (Tf − T2i)

Ainsi, la conservation de l’énergie interne s’écrit,

∆Ui→f = M1 c
∗
1 (Tf − T1i) +M2 c

∗
2 (Tf − T2i) = 0

On en déduit la capacité thermique massique du métal,

c∗1 = c∗2
M2

M1

Tf − T2i

T1i − Tf
= 335 J kg−1 K−1
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5.6 Accroissement de la température lors d’un choc

Une sphère métallique de masseM est en chute libre d’une hauteur h.
Elle entre en collision avec le sol et reste collée au sol après le choc. Durant
le choc, on suppose qu’il n’y a pas de déformation macroscopique de la sphère
et qu’il n’y a pas de transfert de chaleur entre la sphère et le sol. Soit i l’état
initial juste avant la chute libre et f l’état final juste après la collision (fig. 5.1).
Déterminer la variation de température de la sphère ∆Ti→f durant le choc.

Fig. 5.1 Une sphère métallique de masse M , initialement immobile, a un mouvement de
chute libre d’une hauteur h puis s’immobilise au sol.

5.6 Solution

Dans l’état initial avant la chute, la sphère est immobile. Ainsi, son énergie
cinétique initiale est nulle. Dans l’état final après collision, la sphère est au
repos au sol. Ainsi, son énergie cinétique finale est nulle. Par conséquent, la
variation d’énergie de la sphère lors de sa chute est égale à sa variation d’énergie
interne,

∆Ei→f = ∆Ui→f

Étant donné qu’il n’y a pas de transfert de chaleur ou de déformation de la
sphère durant le choc,

Qi→f = Ci→f = Wi→f = 0

Par conséquent, le premier principe (1.80) se réduit à,

∆Ei→f = W ext
i→f

La variation d’énergie interne est donc due au travail effectué par le poids de
la sphère,

∆Ui→f = W ext
i→f

Le travail effectué par le poids Mg de la sphère lors de sa chute d’une hauteur h
s’écrit,

W ext
i→f =

∫ 0

h

Mg · dr = −Mg

∫ 0

h

dz = Mgh



Trois cylindres 3

où g = − g ẑ et dr = − dz ẑ. En prenant la différence de l’expression (5.58) de
l’énergie interne de la sphère métallique durant le choc, on obtient,

∆Ui→f = 3NR∆Ti→f

Ainsi l’augmentation de la température du solide durant le choc est de la forme,

∆Ti→f =
Mgh

3NR

5.10 Trois cylindres

Trois cylindres considérés comme des sous-systèmes simples fermés 1,
2 et 3 de sections identiques A contiennent N moles d’un gaz parfait (fig. 5.2).
Les cylindres sont fixés sur une table qui assure un contact thermique entre
eux. Le système est maintenu à une température T constante. Les pistons qui
contiennent le gaz dans chaque cylindre sont montés sur un levier. La masse
du levier et les transferts de chaleur entre le gaz et le dispositif mécanique sont
négligeables. À chaque instant, le gaz parfait, contenu dans les cylindres de
volume V1, V2 et V3, est à l’équilibre mécanique avec les pistons.

Fig. 5.2 Trois cylindres renferment chacun N moles de gaz. La table assure une température
T constante des trois cylindres.

1) Déterminer les forces extérieures F ext
1 , F ext

2 et F ext
3 exercées par le gaz

sur le levier par l’intermédiaire des pistons et de la barre verticale.

2) En appliquant une loi de conservation mécanique liée au premier principe,
établir la condition d’équilibre pour les pressions p1, p2 et p3.

3) Déterminer la relation liant les variations de volume ∆V1,i→f , ∆V2,i→f et
∆V3,i→f des sous-systèmes imposées par le levier pour un mouvement d’un
état initial i où l’angle d’inclinaison du levier par rapport à l’axe horizontal
est nul, c’est-à-dire θ = 0, à un état final f où l’angle d’inclinaison est θ.

4) Déterminer la variation d’énergie interne ∆Ui→f du système lors d’un mou-
vement de levier.
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5) Montrer que la source d’entropie ΣS de l’ensemble formé du gaz parfait
contenu dans les trois cylindres et des pistons est nulle lors d’un mouvement
de levier. On considère ici les pistons comme l’environnement du gaz parfait.

5.10 Solution

1) Les N moles de gaz parfait à température T contenues dans chaque cylindre
satisfont l’équation d’état pour un gaz parfait (5.66),

p1V1 = NRT et p2V2 = NRT et p3V3 = NRT

Étant donné qu’à chaque instant, le gaz parfait dans chaque cylindre est à
l’équilibre mécanique avec le piston correspondant, les pressions p1, p2 et p3
du gaz parfait dans le trois cylindres sont égales aux pressions extérieures
p ext
1 , p ext

2 et p ext
3 exercées par les pistons sur le gaz parfait,

p1 = p ext
1 et p2 = p ext

2 et p3 = p ext
3

Ainsi, les forces extérieures exercées sur le levier par les pistons sont liées
aux pressions du gaz parfait dans les trois cylindres par les relations sui-
vantes,

F ext
1 = p1 A ẑ et F ext

2 = p2 A ẑ et F ext
3 = p3 A ẑ

Compte tenu de l’équation d’état du gaz parfait, les forces extérieures
s’écrivent alors,

F ext
1 =

NRTA

V1
ẑ et F ext

2 =
NRTA

V2
ẑ et F ext

3 =
NRTA

V3
ẑ

où ẑ est le vecteur unitaire orienté verticalement vers le haut.

2) À l’équilibre mécanique, la loi de conservation du moment cinétique (1.22)
requiert que la somme des moments de forces extérieures (1.24) dus aux
forces extérieures F ext

1 , F ext
2 et F ext

3 exercées par le gaz sur le levier s’an-
nule, ∑

M ext
O = r1 × F ext

1 + r2 × F ext
2 + r3 × F ext

3 = 0

où le point O est l’origine du repère cartésien sur l’axe de rotation du levier,
et r1, r2 et r3 sont les vecteurs position des points d’ancrage des barres
verticales fixées aux pistons sur le levier. Ces vecteurs positions s’écrivent
explicitement comme (fig. 5.2),

r1 = − 2 ℓ n̂ et r2 = − ℓ n̂ et r3 = 3ℓ n̂

où n̂ est le vecteur unitaire orienté le long du levier vers la droite. Ainsi, la
condition d’équilibre devient,

ℓ n̂×
(
− 2F ext

1 − F ext
2 + 3F ext

3

)
= 0 alors 2F ext

1 +F ext
2 − 3F ext

3 = 0

Compte tenu de l’expression des forces extérieures en termes des pressions,
on obtient la relation qui lie les pressions des gaz parfait à l’équilibre,

(2 p1 + p2 − 3 p3)A ẑ = 0 ainsi 2p1 + p2 − 3p3 = 0
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3) Lors d’un mouvement du levier d’un angle θ dans le sens trigonométrique
par rapport à la position horizontale, les variations de volume ∆V1,i→f ,
∆V2,i→f et ∆V3,i→f du gaz parfait dans les trois cylindres s’écrivent
(fig. 5.2),

∆V1,i→f = A∆z1,i→f = − 2 ℓA sin θ

∆V2,i→f = A∆z2,i→f = − ℓA sin θ

∆V3,i→f = A∆z3,i→f = 3 ℓA sin θ

où ∆z1,i→f , ∆z2,i→f et ∆z3,i→f sont les variations infinitésimales de hau-
teur des pistons et A est leur section. Ainsi,

∆V1,i→f = 2∆V2,i→f et ∆V3,i→f = − 3∆V2,i→f

Par conséquent, la variation de volume de gaz parfait ∆V est nulle dans le
système,

∆Vi→f = ∆V1,i→f +∆V2,i→f +∆V3,i→f = 0

ce qui signifie que le volume total du système V = V1+V2+V3 est constant.

4) Compte tenu de l’extensivité de l’énergie interne, lors d’un processus iso-
therme de mouvement de levier, les variations d’énergies internes ∆U1,i→f ,
∆U2,i→f et ∆U3,i→f des N moles de gaz parfait (5.78) dans chaque cylindre
sont nulles. Ainsi, la variation d’énergie interne s’écrit,

∆Ui→f = ∆U1,i→f +∆U2,i→f +∆U3,i→f = 3 cNR∆Ti→f = 0

5) Compte tenu de la relation de Gibbs (4.1) entre l’état initial i et l’état
final f , de la relation entre les variations de volume, de l’identité entre les
pressions et de la variation nulle de l’énergie interne, la variation d’entropie
du système à température constante T est nulle,

∆Si→f =
1

T
(∆Ui→f + p1 ∆V1,i→f + p2 ∆V2,i→f + p3 ∆V3,i→f )

=
1

T
(2 p1 + p2 − 3 p3)∆V2,i→f = 0

Etant donné que la variation d’entropie s’écrit aussi,

∆Si→f =

∫ Sf

Si

dS =

∫ tf

ti

Ṡ dt = 0

on en conclut que l’entropie est constante,

Ṡ = 0

Compte tenu du fait que le courant de chaleur entre le gaz et le disposi-
tif mécanique est négligeable, c’est-à-dire que IQ = 0, l’équation de bilan
d’entropie (2.29) implique alors que la source d’entropie est nulle,

ΣS = Ṡ − IQ
T

= 0

ce qui signifie que le mouvement du levier est réversible.



6 Calorimétrie

5.11 Relation de Mayer pour un élastique

Un élastique de longueur L est soumis à deux forces élastiques sy-
métriques qui provoquent son élongation (fig. 5.3). L’élastique est considéré
comme un système simple constitué d’une seule substance chimique. On sup-

L

f

T

Fig. 5.3 Un élastique de longueur L est soumis à une force résultante de module f qui est
égale en norme à la tension.

pose que le travail effectué par la force de module f est réversible, ce qui signifie
que la norme de la tension de l’élastique est égale à f . Ainsi, le module de la
force f peut être considérée comme variable d’état et le travail infinitésimal
effectué sur l’élastique par la force de module f s’écrit,

δW = f dL

La différentielle de l’énergie interne s’écrit,

dU (S,L) = δQ+ δW = T dS + f dL

Le coefficient de dilatation à force constante αf et le coefficient de compressi-
bilité isotherme χT de l’élastique sont définis comme,

αf =
1

L

∂L (T, f)

∂T
> 0 et χT =

1

L

∂L (T, f)

∂f
> 0

1) Exprimer la différentielle de la longueur dL (T, f) en fonction du coeffi-
cient de dilatation à force constante αf et du coefficient de compressibilité
isotherme χT .

2) Déterminer l’expression de la capacité thermique à longueur constante CL

et de la capacité thermique à force constante Cf en fonction des fonctions
entropies S (T, L) et S (T, f) respectivement.

3) Déterminer les différentielles de l’énergie libre dF (T, L) et de l’énergie libre
de Gibbs dG (T, f).

4) Montrer que la chaleur infinitésimale δQ fournie à l’élastique peut être
écrite en termes des capacités thermiques comme,

δQ = Cf dT + αf LT df et δQ = CL dT +
αf

χT
T dL
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5) Montrer que les capacités thermiques CL et Cf sont liées par la relation de
Mayer,

Cf − CL =
α2
f

χT
T L

5.11 Solution

1) La longueur de l’élastique L (T, f) est une fonction d’état de la température
T et de la force f . La différentielle de la longueur s’écrit,

dL (T, f) =
∂L (T, f)

∂T
dT +

∂L (T, f)

∂f
df

Compte tenu des définitions du coefficient de dilatation à force constante
αf et du coefficient de compressibilité isotherme χT , la différentielle de la
longueur devient,

dL (T, f) = αf LdT + χT Ldf

2) La chaleur infinitésimale δQ fournie à l’élastique peut être écrite comme
fonction de la température T et de la longueur L,

δQ = T dS (T, L) = T
∂S (T, L)

∂T
dT + T

∂S (T, L)

∂L
dL

Ainsi, la capacité thermique à longueur constante L s’écrit,

CL = T
∂S (T, L)

∂T

La chaleur infinitésimale δQ fournie à l’élastique peut être écrite comme
fonction de la température T et de la force f ,

δQ = T dS (T, f) = T
∂S (T, f)

∂T
dT + T

∂S (T, f)

∂f
df

Ainsi, la capacité thermique à force constante f s’écrit,

Cf = T
∂S (T, f)

∂T

3) L’énergie libre F (T, L) est la transformée de l’énergie interne U (S,L) par
rapport à l’entropie S,

F (T, L) = U − ∂U

∂S
S = U − TS

Compte tenu de la différentielle de l’énergie interne dU , la différentielle de
l’énergie libre s’écrit,

dF (T, L) = dU − T dS − S dT = −S dT + f dL

L’énergie libre de Gibbs G (T, f) est la transformée de l’énergie interne
U (S,L) par rapport à l’entropie S et à la longueur L,

G (T, f) = U − ∂U

∂S
S − ∂U

∂L
L = U − TS − fL
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Compte tenu de la différentielle de l’énergie interne dU , la différentielle de
l’énergie libre de Gibbs s’écrit,

dG (T, f) = dU − T dS − S dT − f dL− Ldf = −S dT − Ldf

4) Le théorème de Schwarz appliqué à l’énergie libre F (T, L),

∂

∂T

(
∂F (T, L)

∂L

)
=

∂

∂L

(
∂F (T, L)

∂T

)
donne la relation de Maxwell,

∂f (T, L)

∂T
= − ∂S (T, L)

∂L

En utilisant l’identité cyclique de dérivées partielles des fonctions f (T, L),
T (L, f) et L (T, f),

∂f (T, L)

∂T

∂T (L, f)

∂L

∂L (T, f)

∂f
= − 1

la dérivée partielle de la force par rapport à la température s’écrit,

∂f (T, L)

∂T
= −

(
1

L

∂L (T, f)

∂T

)(
1

L

∂L (T, f)

∂f

)−1

= − αf

χT

Ainsi, la relation de Maxwell devient,

∂S (T, L)

∂L
=

αf

χT

Compte tenu de la définition de la capacité thermique CL et de la relation
de Maxwell, la chaleur infinitésimale δQ fournie à l’élastique devient,

δQ = CL dT +
αf

χT
T dL

Le théorème de Schwarz appliqué à l’énergie libre de Gibbs G (T, f),

∂

∂T

(
∂G (T, f)

∂f

)
=

∂

∂f

(
∂G (T, f)

∂T

)
donne la relation de Maxwell,

− ∂L (T, f)

∂T
= − ∂S (T, f)

∂f

Compte tenu de la définition du coefficient de dilatation à force constante
αf , la relation de Maxwell devient,

∂S (T, f)

∂f
= αf L

Ainsi, compte tenu de la définition de la capacité thermique CL et de la re-
lation de Maxwell, la chaleur infinitésimale δQ fournie à l’élastique devient,

δQ = Cf dT + αf LT df
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5) En substituant la différentielle de la longueur dL (T, f) dans la première
expression de la chaleur infinitésimale δQ, celle-ci devient,

δQ =

(
CL +

α2
f

χT
T L

)
dT + αf LT df

En comparant les deux expressions de la chaleur infinitésimale δQ, on
obtient la relation de Mayer,

Cf − CL =
α2
f

χT
T L




