CHAPITRE 5

Calorimétrie

5.2 Capacité thermique d’un métal

Wyok®  Un bloc métallique de masse M; a une température initiale T5;. I
est plongé dans un calorimétre rempli d’'une masse My d’eau. Le transfert de
chaleur du métal vers I’eau provoque l'augmentation de la température de ’eau
d’une température initiale T3; a une température finale 7. On suppose que la
capacité thermique du calorimetre est négligeable et que le bloc et I'eau sont
incompressibles. Le systeme formé du bloc et de 'eau est considéré comme
isolé. La capacité thermique massique de ’eau est c5. Déterminer la capacité
thermique massique du métal cj.

Application numérique
My = 0.5 kg, My =1 kg, T1; = 120°C, Tp; = 16°C, Ty = 20°C and c5 = 4187
J kg™t K7L

(5.3) Solution

Le systeme constitué du bloc métallique et de ’eau est isolé. Ainsi, la variation
d’énergie interne du systéme, qui est la somme de la variation d’énergie interne
du bloc AU; - et de 'eau AUz, est nulle,

AUy = AUrisg + AUz iy =0

Compte tenu des transferts de chaleur entre les sous-systeme a volume constant,
le premier principe (1.65) appliqué au bloc et & I'eau s’écrit,

AUrisg = Q73 = C1 (Ty — Tui) = My ¢ (Ty — Tui)
AUzisy = Q57 = Co (Ty — Toi) = Mo e (T — Ti;)
Ainsi, la conservation de ’énergie interne s’écrit,
AUi g =My (T — Th;) + Macy (Ty — To;)) =0
On en déduit la capacité thermique massique du métal,

« Moy Ty — Tp;

=cy =L -2 _ kg PK1
T — 335J kg

"
1
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5.6 Accroissement de la température lors d’un choc

Yovefok Une sphere métallique de masse M est en chute libre d’une hauteur h.
Elle entre en collision avec le sol et reste collée au sol apres le choc. Durant
le choc, on suppose qu’il n’y a pas de déformation macroscopique de la sphere
et qu’il n’y a pas de transfert de chaleur entre la sphere et le sol. Soit ¢ I’état
initial juste avant la chute libre et f ’état final juste apres la collision (fig. 5.1).
Déterminer la variation de température de la sphere AT;_, s durant le choc.

-

|

:
(an)

Fig. 5.1 Une sphére métallique de masse M, initialement immobile, a un mouvement de
chute libre d’une hauteur h puis s’immobilise au sol.

Solution

Dans I’état initial avant la chute, la sphere est immobile. Ainsi, son énergie
cinétique initiale est nulle. Dans ’état final apres collision, la sphére est au
repos au sol. Ainsi, son énergie cinétique finale est nulle. Par conséquent, la
variation d’énergie de la sphere lors de sa chute est égale a sa variation d’énergie
interne,

AEi—>f = AUi—>f

Etant donné qu’il n’y a pas de transfert de chaleur ou de déformation de la
sphere durant le choc,

Qiaf = Ciaf = Wiaf =0
Par conséquent, le premier principe (1.80) se réduit a,

AE; 5 =W

(3

La variation d’énergie interne est donc due au travail effectué par le poids de
la sphere,
AUy = er—);i‘

Le travail effectué par le poids Mg de la sphére lors de sa chute d’une hauteur h
s’écrit,

0 0
Wlej}:/h Mg-dr:—Mg/h dz = Mgh
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ol g=—g2etdr=—dzZ2. En prenant la différence de I'expression (5.58) de
I’énergie interne de la sphere métallique durant le choc, on obtient,

AUy =3NRAT;
Ainsi 'augmentation de la température du solide durant le choc est de la forme,

Mgh

Alior = 38R

5.10 Trois cylindres

WYokk  Trois cylindres considérés comme des sous-systémes simples fermés 1,
2 et 3 de sections identiques A contiennent N moles d’un gaz parfait (fig. 5.2).
Les cylindres sont fixés sur une table qui assure un contact thermique entre
eux. Le systéme est maintenu a une température T constante. Les pistons qui
contiennent le gaz dans chaque cylindre sont montés sur un levier. La masse
du levier et les transferts de chaleur entre le gaz et le dispositif mécanique sont
négligeables. A chaque instant, le gaz parfait, contenu dans les cylindres de
volume V7, V5 et V3, est a I’équilibre mécanique avec les pistons.

Fig. 5.2 Trois cylindres renferment chacun N moles de gaz. La table assure une température
T constante des trois cylindres.

1) Déterminer les forces extérieures F ™", F5" et F$*' exercées par le gaz
sur le levier par I'intermédiaire des pistons et de la barre verticale.

2) En appliquant une loi de conservation mécanique liée au premier principe,
établir la condition d’équilibre pour les pressions p1, p2 et ps.

3) Déterminer la relation liant les variations de volume AV; ; ¢, AV, 5 et
AV3 ;s des sous-systémes imposées par le levier pour un mouvement d'un
état initial ¢ ou ’angle d’inclinaison du levier par rapport a ’axe horizontal
est nul, c’est-a-dire 8 = 0, a un état final f ou 'angle d’inclinaison est 6.

4) Déterminer la variation d’énergie interne AU, _, y du systeéme lors d’un mou-
vement de levier.
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Montrer que la source d’entropie g de ’ensemble formé du gaz parfait
contenu dans les trois cylindres et des pistons est nulle lors d’'un mouvement
de levier. On consideére ici les pistons comme ’environnement du gaz parfait.

Solution

1)

Les N moles de gaz parfait a température T contenues dans chaque cylindre
satisfont ’équation d’état pour un gaz parfait (5.66),

piVi=NRT et poVo = NRT et p3Vs = NRT

Etant donné qu’a chaque instant, le gaz parfait dans chaque cylindre est a
I’équilibre mécanique avec le piston correspondant, les pressions p1, ps et p3
du gaz parfait dans le trois cylindres sont égales aux pressions extérieures

pXt ps*t et psXt exercées par les pistons sur le gaz parfait,
p=p™ et pp=p>* et p3=p™

Ainsi, les forces extérieures exercées sur le levier par les pistons sont liées
aux pressions du gaz parfait dans les trois cylindres par les relations sui-
vantes,

FeXt—plAi et FeXt—pgAﬁ et FEXt—pgA,é

Compte tenu de l'équation d’état du gaz parfait, les forces extérieures
s’écrivent alors,
N RTA

F ext t F ext t F ext __
v 0 w Vv

ol £ est le vecteur unitaire orienté verticalement vers le haut.

A Péquilibre mécanique, la loi de conservation du moment cinétique (1.22)
requiert que la somme des moments de forces extérieures (1.24) dus aux
forces extérieures F{**, F$*" et F'$*" exercées par le gaz sur le levier s’an-
nule,

ZMeXt—TjXFl +T’2XF§Xt+T‘3XFeXt—

ot le point O est l'origine du repere cartésien sur I’axe de rotation du levier,
et r1, ro et r3 sont les vecteurs position des points d’ancrage des barres
verticales fixées aux pistons sur le levier. Ces vecteurs positions s’écrivent
explicitement comme (fig. 5.2),

ri=-—24n et ro=—4n et r3=3(Nn

ou 71 est le vecteur unitaire orienté le long du levier vers la droite. Ainsi, la
condition d’équilibre devient,

Z’Fl X ( 2Fext ext 4 3Fext) =0 alors 2Fext ext 3Fext

Compte tenu de I'expression des forces extérieures en termes des pressions,
on obtient la relation qui lie les pressions des gaz parfait a 1’équilibre,

(2p1+p2—3p3) A2=0  ainsi  2p1+p2— 3p3 =0
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Lors d’'un mouvement du levier d’un angle 6 dans le sens trigonométrique
par rapport & la position horizontale, les variations de volume AV ;_f,
AVaisy et AVs;,; du gaz parfait dans les trois cylindres s’écrivent
(fig. 5.2),

AVl,i_”t = AAZLZ'_”C =—2(Asinf

AVQ,Z*_>f = AAZQ,I*_Uf = —EA sin 6

AVg’iﬁf = AAZg}iﬁf =3/ Asinf

ot Azi ¢, Az ir et Azg ;¢ sont les variations infinitésimales de hau-
teur des pistons et A est leur section. Ainsi,

AVLZ‘*}f = 2AV2,iaf et A‘/Ei,iaf = - 3AV2,iaf

Par conséquent, la variation de volume de gaz parfait AV est nulle dans le
systeme,

AVi%f = AVl,iﬁf + AV2,i%f + A‘/B,i%f =0
ce qui signifie que le volume total du systeme V = Vi + V54 V3 est constant.

Compte tenu de l'extensivité de 1’énergie interne, lors d’un processus iso-
therme de mouvement de levier, les variations d’énergies internes AU ;—,,
AUs ;5 et AUs ;¢ des N moles de gaz parfait (5.78) dans chaque cylindre
sont nulles. Ainsi, la variation d’énergie interne s’écrit,

AUi_>f e AUl,i_>f + AU27Z‘_>f + AU37i_>f = 3CNRAT%_>f =0

Compte tenu de la relation de Gibbs (4.1) entre I’état initial i et I’état
final f, de la relation entre les variations de volume, de I'identité entre les
pressions et de la variation nulle de ’énergie interne, la variation d’entropie
du systeme a température constante T est nulle,

1
ASip = T (AUimp +p1 AViin s +p2 AVo iy +p3 AV iy)

1
=7 (2p1+p2— 3p3)AVo iy =0

Etant donné que la variation d’entropie s’écrit aussi,

Sy ty o,
ASi_,f:/ dS:/ Sdt=0
S; ti

on en conclut que 'entropie est constante,

S=0

Compte tenu du fait que le courant de chaleur entre le gaz et le disposi-
tif mécanique est négligeable, c’est-a-dire que Ig = 0, I'équation de bilan
d’entropie (2.29) implique alors que la source d’entropie est nulle,

oy
Bs=5- 2 =0

ce qui signifie que le mouvement du levier est réversible.
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5.11 Relation de Mayer pour un élastique

WYok  Un élastique de longueur L est soumis & deux forces élastiques sy-
métriques qui provoquent son élongation (fig. 5.3). L’élastique est considéré
comme un systéme simple constitué d’une seule substance chimique. On sup-

Fig. 5.3 Un élastique de longueur L est soumis & une force résultante de module f qui est
égale en norme a la tension.

pose que le travail effectué par la force de module f est réversible, ce qui signifie
que la norme de la tension de ’élastique est égale a f. Ainsi, le module de la
force f peut étre considérée comme variable d’état et le travail infinitésimal
effectué sur I’élastique par la force de module f s’écrit,

oW = fdL
La différentielle de 1’énergie interne s’écrit,
dU (S,L) =0Q + 0W =TdS + fdL

Le coefficient de dilatation & force constante oy et le coefficient de compressi-
bilité isotherme yr de I’élastique sont définis comme,

_ 1 OL(T.f)

:liaL(T’f)>O et XT =7 of

L or >0

af

1) Exprimer la différentielle de la longueur dL (T, f) en fonction du coeffi-
cient de dilatation & force constante oy et du coefficient de compressibilité
isotherme x.

2) Déterminer l'expression de la capacité thermique & longueur constante Cp,
et de la capacité thermique a force constante Cy en fonction des fonctions
entropies S (T, L) et S (T, f) respectivement.

3) Déterminer les différentielles de 1’énergie libre dF (T, L) et de 1'énergie libre
de Gibbs dG (T, f).

4) Montrer que la chaleur infinitésimale 6@ fournie & 1’élastique peut étre
écrite en termes des capacités thermiques comme,

5Q=Cpdl +a;LTdf et 6Q=Cpdl+ 2L TdL
XT
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5) Montrer que les capacités thermiques Cr, et Cy sont liées par la relation de

Mayer,
2

oy
Cf— CL =—TL
XT

Solution

1) La longueur de I’élastique L (T, f) est une fonction d’état de la température
T et de la force f. La différentielle de la longueur s’écrit,

OL (T, f) OL(T, f)

— o dT + ——=d

aT Y

Compte tenu des définitions du coefficient de dilatation & force constante

oy et du coefficient de compressibilité isotherme xr, la différentielle de la

longueur devient,

dL (T, f) =

AL (T, f) = oy LdT + xr Ldf

2) La chaleur infinitésimale 0Q fournie & P'élastique peut étre écrite comme
fonction de la température T' et de la longueur L,

B _ ,08(T,L) oS (T,L)
0Q =TdS(T,L) _TTdT+TTdL
Ainsi, la capacité thermique a longueur constante L s’écrit,
oS (T,L)
Y A Skt
CL oT

La chaleur infinitésimale §Q) fournie a 1’élastique peut étre écrite comme
fonction de la température T et de la force f,

_ _ 5 O5(T, f) 95 (T, f)
0Q=TdS(T,f)=T o7 dT'+T a7 df
Ainsi, la capacité thermique a force constante f s’écrit,
95 (T, f)
= T ——
Cs aT

3) L’énergie libre F (T, L) est la transformée de I’énergie interne U (S, L) par
rapport a l'entropie S,
ou
F(T,L)=U- —S=U-TS
( ? ) as

Compte tenu de la différentielle de 1’énergie interne dU, la différentielle de
I’énergie libre s’écrit,

dF(T,L) =dU — TdS — SdT = — SdT + fdL

L’énergie libre de Gibbs G (T, f) est la transformée de ’énergie interne
U (S, L) par rapport a I'entropie S et & la longueur L,

ouU oU
G(T,f)=U — g8 p L=U-TS-fL
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Compte tenu de la différentielle de I’énergie interne dU, la différentielle de
I’énergie libre de Gibbs s’écrit,

dG(T,f)=dU — TdS — SdT — fdL— Ldf =—-SdT — Ldf
Le théoréme de Schwarz appliqué & Uénergie libre F (T, L),

0 (8F((3€,L))_ 0 (6Féﬂ;L))

or

- 0L
donne la relation de Maxwell,

Of (T,L) _ 0S(T,L)

or oL

En utilisant l'identité cyclique de dérivées partielles des fonctions f (T, L),
T (L, f) et L(T, [),

of (T,L) o1 (L, f) OL(T\ f)
aT oL af

la dérivée partielle de la force par rapport a la température s’écrit,

aof (L) _ (16L(T,f)> (13L(T,f))—1:_af

=—1

oT L 0T L of XT
Ainsi, la relation de Maxwell devient,
08 (T,L) oy
oL N XT
Compte tenu de la définition de la capacité thermique C, et de la relation
de Maxwell, la chaleur infinitésimale §Q) fournie & ’élastique devient,

5Q = Cpdl + X TdL
XT

Le théoreme de Schwarz appliqué a I’énergie libre de Gibbs G (T, f),

0 (0G(T,f)\ _ 0 (0G(T,[)

oT of of oT
donne la relation de Maxwell,

_OL(T.f) _  95(T,f)
or of

Compte tenu de la définition du coefficient de dilatation a force constante
oy, la relation de Maxwell devient,

05 (T, f)
of

Ainsi, compte tenu de la définition de la capacité thermique C, et de la re-
lation de Maxwell, la chaleur infinitésimale 6@ fournie & 1’élastique devient,

0Q =CydTl +ay LT df

=ayL
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5) En substituant la différentielle de la longueur dL (T, f) dans la premiere
expression de la chaleur infinitésimale §(Q), celle-ci devient,

OéQ
5Q = <0L+ XfTL> dT + ay LT df
T

En comparant les deux expressions de la chaleur infinitésimale §@), on
obtient la relation de Mayer,

of
C;r—Cr=—TL
XT






